Cohen-Macaulay normal Rees algebras of integrally closed ideals

Naoki Endo

School of Political Science and Economics, Meiji University

日本数学会 2024 年度秋季総合分科会

September 3, 2024

Introduction

Question 1

Let (R, \mathfrak{m}) be a RLR with $d = \dim R$ and I an integrally closed \mathfrak{m} -primary ideal of R. When does the Rees algebra $\mathcal{R}(I) = \bigoplus_{n \ge 0} I^n$ become a CM normal domain?

Let R be a Noetherian ring and I an ideal of R. Recall

- $x \in R$ is integral over $I \iff x^n + c_1 x^{n-1} + \dots + c_n = 0$ for $\exists n \ge 1, \exists c_i \in I'$
- $I \subseteq \overline{I} = \{x \in R \mid x \text{ is integral over } I\} \subseteq R$
- *I* is integrally closed $\stackrel{def}{\iff} \bar{I} = I$
- *I* is normal $\iff \overline{I^n} = I^n$ for $\forall n \ge 1$.

We define

$$\mathcal{R}(I) = \mathcal{R}[It] = \sum_{n \ge 0} I^n t^n \subseteq \mathcal{R}[t], \quad \mathcal{R}(I) \cong \bigoplus_{n \ge 0} I^n$$

and call it the Rees algebra of I.

The canonical morphism f : Proj R(I) → Spec R is the blow-up of Spec R along the subscheme V(I) defined by I.

Note that

$$\overline{\mathcal{R}(I)}^{\mathcal{R}[t]} = \sum_{n \ge 0} \overline{I^n} t^n \cong \bigoplus_{n \ge 0} \overline{I^n} \quad \text{and} \quad \overline{\mathcal{R}(I)}^{\mathcal{Q}(\mathcal{R}(I))} = \sum_{n \ge 0} \overline{I^n \overline{\mathcal{R}}} t^n \cong \bigoplus_{n \ge 0} \overline{I^n \overline{\mathcal{R}}}.$$

Hence, $\mathcal{R}(I)$ is normal $\iff I$ is normal, provided *R* is a normal domain.

The associated graded ring of I

$$\operatorname{gr}_{I}(R) = \bigoplus_{n \geq 0} I^{n} / I^{n+1} \cong R / I \otimes_{R} \mathcal{R}(I)$$

plays a key role in the study of $\mathcal{R}(I)$.

Theorem 2 ([Goto-Shimoda, 1979])

Let (R, \mathfrak{m}) be a CM local ring with dim $R \ge 1$ and $\sqrt{I} = \mathfrak{m}$. Then

$$\mathcal{R}(I) \text{ is } CM \iff \operatorname{gr}_{I}(R) \text{ is } CM \text{ and } \operatorname{a}(\operatorname{gr}_{I}(R)) < 0.$$

- Theorem 2 holds for ideals I with $ht_R I > 0$ ([Trung-Ikeda, 1989]).
- When R is a RLR (or more generally pseudo-rational local ring) and $I \neq R$, we have

$$\mathcal{R}(I)$$
 is CM \iff gr_I(R) is CM ([Lipman, 1994]).

Question 1

Let (R, \mathfrak{m}) be a RLR with $d = \dim R$ and I an integrally closed \mathfrak{m} -primary ideal of R. When does the Rees algebra $\mathcal{R}(I) = \bigoplus_{n \ge 0} I^n$ become a CM normal domain?

• Question 1 is always true when $d \leq 1$.

Preceding results

Let (R, \mathfrak{m}) be a RLR with $d = \dim R$ and I an integrally closed \mathfrak{m} -primary ideal of R.

- If d = 2, then $\mathcal{R}(I)$ is normal ([Zariski, 1938], [Zariski-Samuel, 1960]).
- If d = 2, then $\mathcal{R}(I)$ is CM ([Lipman-Teissier, 1981]).

When $d \ge 3$, we have the following examples.

Example 3

Let R = k[[X, Y, Z]] be the formal power series ring over a field k. Consider

$$Q = (X^7, Y^3, Z^2)$$
 and $I = \overline{Q} = (X^7, Y^3, Z^2, X^5Y, X^4Z, X^3Y^2, X^2YZ, Y^2Z).$

Then $\overline{I} = I$, $\overline{I^2} \neq I^2$, and $I^2 = QI$. Hence $\mathcal{R}(I)$ is CM, but not normal.

Example 4 ([Huckaba-Huneke, 1999])

Let R = k[[X, Y, Z]] be the formal power series ring over a field k. Suppose $ch k \neq 3$. Consider

$$I = (X^4, X(Y^3 + Z^3), Y(Y^3 + Z^3), Z(Y^3 + Z^3)) + \mathfrak{m}^5$$

where $\mathfrak{m} = (X, Y, Z)$. Then *I* is normal and $\operatorname{gr}_{I}(R) = \bigoplus_{n \ge 0} I^{n}/I^{n+1}$ is not CM. Hence, $\mathcal{R}(I)$ is normal, but not CM.

- v(-) the embedding dimension of a ring
- $\mu_R(-)$ the minimal number of generators

Preceding results

Let (R, \mathfrak{m}) be a RLR with $d = \dim R$ and I an integrally closed \mathfrak{m} -primary ideal of R.

• By [Goto, 1987], we have

(1) $\mu_R(I) = d \implies \mathcal{R}(I)$ is a CM normal domain

(2) $\mu_R(I) = d \iff v(R/I) \le 1.$

By [Ciupercă, 2006, 2011], we have

(1) $\mu_R(I) = d + 1 \implies \mathcal{R}(I)$ is a CM normal domain

(2) $\mu_R(I) = d + 1 \implies v(R/I) \leq 2.$

Main results

Theorem A

Let (R, \mathfrak{m}) be a RLR with $d = \dim R$ and $\sqrt{I} = \mathfrak{m}$ s.t. $\overline{I} = I$. Then

(1) $v(R/I) \leq 2 \implies \mathcal{R}(I)$ is a CM normal domain

(2) $\mu_R(I) \leq d+2 \implies v(R/I) \leq 2.$

In particular, if $\mu_R(I) \leq d+2$, then $\mathcal{R}(I)$ is a CM normal domain.

Why $\mu_R(I) \le d + 2$?

Suppose d = 3 and $|R/\mathfrak{m}| = \infty$. Then

- $v(R/I) \leq 2 \iff I$ contains a minimal basis of $\mathfrak{m} \iff I \not\subseteq \mathfrak{m}^2$
- $\sqrt{I} = \mathfrak{m}$ and $\overline{I} = I \implies I$ is \mathfrak{m} -full
- $\mu_R(I) \leq d+2 \ (=5) \implies I \not\subseteq \mathfrak{m}^2.$

Indeed, if $I \subseteq \mathfrak{m}^2$, then

$$5=d+2\geq \mu_R(l)\geq \mu_R(\mathfrak{m}^2)=\binom{d+1}{2}=\frac{d(d+1)}{2}=6.$$

This makes a contradiction. Hence $I \not\subseteq \mathfrak{m}^2$. If $\mu_R(I) = d + 3$, then $\exists I = \overline{I}$ s.t. $I \subseteq \mathfrak{m}^2$.

Example 5

Let R = k[[X, Y, Z]] be the formal power series ring over a field k.

- Let $I = \overline{(X^3, Y^3, Z)} = (X^3, X^2Y, XY^2, Y^3, Z)$. Then $\overline{I} = I$, $\sqrt{I} = \mathfrak{m}$, and $\mu_R(I) = 5 = d + 2$. Hence, $\mathcal{R}(I)$ is a CM normal domain.
- Let $I = \overline{(X^4, Y^4, Z)} = (X^4, X^3Y, X^2Y^2, XY^3, Y^4, Z)$. Then $\overline{I} = I$, $\sqrt{I} = \mathfrak{m}$, and $\mu_R(I) = 6 > d+2$, but v(R/I) = 2. Hence, $\mathcal{R}(I)$ is a CM normal domain.
- Let $I = (f) + \mathfrak{m}^n$ for $\forall f \in \mathfrak{m} \setminus \mathfrak{m}^2$ and $\forall n \ge 1$. Then $\overline{I} = I$, $\sqrt{I} = \mathfrak{m}$, and $v(R/I) \le 2$. Hence, $\mathcal{R}(I)$ is a CM normal domain.
- Let $I = \overline{(X^2, Y^2, Z^4)} = (X^2, XY, Y^2, Z^4, XZ^2, YZ^2) \subseteq \mathfrak{m}^2$. Then $\overline{I} = I$, $\sqrt{I} = \mathfrak{m}$, and v(R/I) = 3. Since $\overline{I^2} = I^2$, the ideal I is normal. By setting $Q = (X^2, Y^2, Z^4)$, we have $I^2 = QI$. Hence, $\mathcal{R}(I)$ is a CM normal domain.

Theorem B

Let (R, \mathfrak{m}) be a RLR with $d = \dim R$ and $F = R^{\oplus e}$ (e > 0). Let E be an R-submodule of F s.t. $\ell_R(F/E) < \infty$ and $\overline{E} = E$. Then (1) $\mu_R([E + \mathfrak{m}F]/E) \le 2 \implies \mathcal{R}(E)$ is a CM normal domain (2) $\mu_R(E) \le d + e + 1 \implies \mu_R([E + \mathfrak{m}F]/E) \le 2$. In particular, if $\mu_R(E) \le d + e + 1$, then $\mathcal{R}(E)$ is a CM normal domain. Thank you for your attention.