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Introduction

Question 1

Let (R,m) be a RLR with d = dimR and I an integrally closed m-primary ideal of R.

When does the Rees algebra R(I ) =
⊕

n≥0 I
n become a CM normal domain?

Let R be a Noetherian ring and I an ideal of R. Recall

x ∈ R is integral over I
def⇐⇒ xn + c1x

n−1 + · · ·+ cn = 0 for ∃ n ≥ 1, ∃ ci ∈ I i

I ⊆ I = {x ∈ R | x is integral over I} ⊆ R

I is integrally closed
def⇐⇒ I = I

I is normal
def⇐⇒ I n = I n for ∀ n ≥ 1.

We define
R(I ) = R[It] =

∑
n≥0

I ntn ⊆ R[t], R(I ) ∼=
⊕
n≥0

I n

and call it the Rees algebra of I .

The canonical morphism f : ProjR(I ) → SpecR is the blow-up of SpecR along the
subscheme V (I ) defined by I .
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Note that

R(I )
R[t]

=
∑
n≥0

I ntn ∼=
⊕
n≥0

I n and R(I )
Q(R(I ))

=
∑
n≥0

I nRtn ∼=
⊕
n≥0

I nR.

Hence, R(I ) is normal ⇐⇒ I is normal, provided R is a normal domain.

The associated graded ring of I

grI (R) =
⊕
n≥0

I n/I n+1 ∼= R/I ⊗R R(I )

plays a key role in the study of R(I ).

Theorem 2 ([Goto-Shimoda, 1979])

Let (R,m) be a CM local ring with dimR ≥ 1 and
√
I = m. Then

R(I ) is CM ⇐⇒ grI (R) is CM and a(grI (R)) < 0.

Theorem 2 holds for ideals I with htR I > 0 ([Trung-Ikeda, 1989]).

When R is a RLR (or more generally pseudo-rational local ring) and I ̸= R, we have

R(I ) is CM ⇐⇒ grI (R) is CM ([Lipman, 1994]).
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Question 1

Let (R,m) be a RLR with d = dimR and I an integrally closed m-primary ideal of R.

When does the Rees algebra R(I ) =
⊕

n≥0 I
n become a CM normal domain?

Question 1 is always true when d ≤ 1.

Preceding results

Let (R,m) be a RLR with d = dimR and I an integrally closed m-primary ideal of R.

If d = 2, then R(I ) is normal ([Zariski, 1938], [Zariski-Samuel, 1960]).

If d = 2, then R(I ) is CM ([Lipman-Teissier, 1981]).

When d ≥ 3, we have the following examples.

Example 3

Let R = k[[X ,Y ,Z ]] be the formal power series ring over a field k. Consider

Q = (X 7,Y 3,Z 2) and I = Q = (X 7,Y 3,Z 2,X 5Y ,X 4Z ,X 3Y 2,X 2YZ ,Y 2Z).

Then I = I , I 2 ̸= I 2, and I 2 = QI . Hence R(I ) is CM, but not normal.
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Example 4 ([Huckaba-Huneke, 1999])

Let R = k[[X ,Y ,Z ]] be the formal power series ring over a field k. Suppose ch k ̸= 3.
Consider

I = (X 4,X (Y 3 + Z 3),Y (Y 3 + Z 3),Z(Y 3 + Z 3)) + m5

where m = (X ,Y ,Z). Then I is normal and grI (R) =
⊕

n≥0 I
n/I n+1 is not CM. Hence,

R(I ) is normal, but not CM.

v(−) the embedding dimension of a ring

µR(−) the minimal number of generators

Preceding results

Let (R,m) be a RLR with d = dimR and I an integrally closed m-primary ideal of R.

By [Goto, 1987], we have

(1) µR(I ) = d =⇒ R(I ) is a CM normal domain

(2) µR(I ) = d ⇐⇒ v(R/I ) ≤ 1.

By [Ciupercă, 2006, 2011], we have

(1) µR(I ) = d + 1 =⇒ R(I ) is a CM normal domain

(2) µR(I ) = d + 1 =⇒ v(R/I ) ≤ 2.
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Main results

Theorem A

Let (R,m) be a RLR with d = dimR and
√
I = m s.t. I = I . Then

(1) v(R/I ) ≤ 2 =⇒ R(I ) is a CM normal domain

(2) µR(I ) ≤ d + 2 =⇒ v(R/I ) ≤ 2.

In particular, if µR(I ) ≤ d + 2, then R(I ) is a CM normal domain.

Why µR(I ) ≤ d + 2?

Suppose d = 3 and |R/m| = ∞. Then

v(R/I ) ≤ 2 ⇐⇒ I contains a minimal basis of m ⇐⇒ I ̸⊆ m2

√
I = m and I = I =⇒ I is m-full

µR(I ) ≤ d + 2 (= 5) =⇒ I ̸⊆ m2.

Indeed, if I ⊆ m2, then

5 = d + 2 ≥ µR(I ) ≥ µR(m
2) =

(
d + 1
2

)
=

d(d + 1)

2
= 6.

This makes a contradiction. Hence I ̸⊆ m2. If µR(I ) = d + 3, then ∃ I = I s.t. I ⊆ m2.
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Example 5

Let R = k[[X ,Y ,Z ]] be the formal power series ring over a field k.

Let I = (X 3,Y 3,Z) = (X 3,X 2Y ,XY 2,Y 3,Z). Then I = I ,
√
I = m, and

µR(I ) = 5 = d + 2. Hence, R(I ) is a CM normal domain.

Let I = (X 4,Y 4,Z) = (X 4,X 3Y ,X 2Y 2,XY 3,Y 4,Z). Then I = I ,
√
I = m, and

µR(I ) = 6 > d + 2, but v(R/I ) = 2. Hence, R(I ) is a CM normal domain.

Let I = (f ) +mn for ∀ f ∈ m \m2 and ∀ n ≥ 1. Then I = I ,
√
I = m, and

v(R/I ) ≤ 2. Hence, R(I ) is a CM normal domain.

Let I = (X 2,Y 2,Z 4) = (X 2,XY ,Y 2,Z 4,XZ 2,YZ 2) ⊆ m2. Then I = I ,
√
I = m,

and v(R/I ) = 3. Since I 2 = I 2, the ideal I is normal. By setting Q = (X 2,Y 2,Z 4),
we have I 2 = QI . Hence, R(I ) is a CM normal domain.

Theorem B

Let (R,m) be a RLR with d = dimR and F = R⊕e (e > 0). Let E be an R-submodule
of F s.t. ℓR(F/E) < ∞ and E = E. Then

(1) µR([E +mF ]/E) ≤ 2 =⇒ R(E) is a CM normal domain

(2) µR(E) ≤ d + e + 1 =⇒ µR([E +mF ]/E) ≤ 2.

In particular, if µR(E) ≤ d + e + 1, then R(E) is a CM normal domain.
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Thank you for your attention.
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